PHOTONICS Research

Broadband adiabatic polarization rotator-splitter based on a lithium niobate on insulator platform: publisher's note

ZHAOXI CHEN,^{1,†} DINGWEI YANG,^{1,†} WING-HAN WONG,¹ EDWIN YUE-BUN PUN,^{1,2} AND CHENG WANG^{1,2,*}

¹Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China ²State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong, China *Corresponding author: cwang257@cityu.edu.hk

Received 17 December 2021; posted 17 December 2021 (Doc. ID 451711); published 14 January 2022

This publisher's note reports corrections to the text in Photon. Res. 9, 2319 (2021). © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.451711

The second paragraph in Section 2 of this article was corrected as follows.

In the polarization rotator (Step I), the LN rib waveguide adiabatically widens from a top width of 1.2 to 3.6 μ m via a linear taper, such that the effective index of the second-order TE (TE₁) mode surpasses that of the fundamental TM (TM₀) mode [Fig. 1(c)]. The partially etched structure breaks the vertical symmetry of the waveguide and enables a substantial avoided crossing between the two modes ($\Delta n_{\rm eff} = 0.019$) at a waveguide top width of 2.12 μ m as shown in Fig. 1(c). As a result, the input **TM**₀ mode is converted first to a hybridized mode between **TM**₀ and TE₁ [inset of Fig. 1(c)] and finally to the TE₁ mode. While the input **TM**₀ mode is rotated and converted into TE₁ mode, the polarization state of the input TE_0 mode remains unchanged during Step I, since it stays the highest-index mode throughout the tapered structure [blue curve in Fig. 1(c)].

The text in bold was incorrect in the original published version, and the article was corrected online on 7 December 2021 [1].

[†]These authors contributed equally to the paper.

REFERENCE

 Z. Chen, J. Yang, W.-H. Wong, E. Y.-B. Pun, and C. Wang, "Broadband adiabatic polarization rotator-splitter based on a lithium niobate on insulator platform," Photon. Res. 9, 2319–2324 (2021).